

الجامعة السورية الخاصة SYRIAN PRIVATE UNIVERSITY

كلية هندسة الحاسوب والمعلوماتية **Computer and Informatics Engineering** Faculty

Electric Circuits I

Dr. Eng. Hassan M. Ahmad

Hassan.Ahmad@spu.edu.sy,

istamo48@mail.ru

Chapter 6 Capacitors and Inductors

6.1 Capacitors
6.2 Series and Parallel Capacitors
6.3 Inductors
6.4 Series and Parallel Inductors

6.1 Capacitors

q = Cv

- A capacitor is a passive element designed to store energy in its electric field.
 - A **capacitor** consists of two conducting plates separated by an insulator (or dielectric).
 - The amount of **charge** stored, represented by *q*:
- Capacitance C is the ratio of the charge q on one plate of a capacitor to the voltage difference v between the two plates, measured in farads (F).
- For example, for the parallel plate capacitor shown in Fig., the capacitance is given by $C = \frac{\varepsilon A}{C}$

where ε is the permittivity (سماحية) of the dielectric material between the plates, A is the surface area (مساحة) of each plate, d is the distance between the plates.

Dielectric with permittivity c

Metal plates, each with area A

9/23/2018

Types of Capacitors

- Typically, capacitors have values in the picofarad (pF,10⁻¹²), nanofarad (nF,10⁻⁹), microfarad (μ F,10⁻⁶).
- There are two types: (a) fixed and (b) variable, with circuit symbols as shown in Fig.
- If v > 0 and i > 0 or if v < 0 and i < 0, the capacitor is being charged, and if $v \cdot i < 0$, the capacitor is discharging.
- **Fixed capacitors**: (1) polyester, (2) ceramic, (3) electrolytic.
- **Variable capacitors**: (4) trimmer, (5) filmtrim.
- In addition, capacitors are used to block dc, pass ac, shift phase, store energy, start motors, and suppress noise.

9/23/2018

Dr. eng. Hassan Ahmad

(a)

Current & Voltage of the capacitor

If v > 0 and i > 0 or if v < 0 and i < 0, the capacitor is being charged, and if v·i < 0, the capacitor is discharging.
The current-voltage relationship of the capacitor is defined as following:

$$q = Cv$$
 and $i = \frac{dq}{dt} \Rightarrow i = C\frac{dv}{dt}$

• The voltage-current relation of the capacitor can be obtained by $v(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau$ or $v(t) = \frac{1}{C} \int_{t_0}^{t} i(\tau) d\tau + v(t_0)$

• where $v(t_0) = q(t_0)/C$ is the voltage across the capacitor

at time t_0 .

9/23/2018

Power & Energy of the capacitor

- The instantaneous power delivered to the capacitor is
- The energy stored in the capacitor is

$$w = \int_{-\infty}^{t} p(\tau) d\tau = C \int_{-\infty}^{t} v \frac{dv}{d\tau} d\tau = C \int_{v(-\infty)}^{v(t)} v dv = \frac{1}{2} C v^{2} \bigg|_{v(-\infty)}^{v(t)} d\tau$$

- We note that $v(-\infty) = 0$, because the capacitor was uncharged at $t = -\infty$.
- Thus, $w = \frac{1}{2}Cv^2$. We may rewrite energy stored as
- Important properties of a capacitor:
 - 1) A capacitor is an open circuit to dc voltage (the current through the capacitor is zero). (dc conditions)
 - The voltage on a capacitor cannot change abruptly (فجأة).

9/23/2018

Dr. eng. Hassan Ahmad

 $p = vi = Cv \frac{dv}{dv}$

 $w = \frac{q^2}{2C}$

- 1) Calculate the charge stored on a 3-pF capacitor with 20 V across it.
- 2) Find the energy stored in the capacitor.

Solution

- 1) Since q = Cv, $\Rightarrow q = 3 \times 10^{-12} \times 20 = 60 \,\mathrm{pC}$
- 2) The energy stored is

$$w = \frac{1}{2}Cv^2 = \frac{1}{2} \times 3 \times 10^{-12} \times (20)^2 = 600 \,\mathrm{pJ}$$

Example 6.2

The voltage across a 5- μ F capacitor is $v(t) = 10\cos 6000t$ V Calculate the current through it.

Solution

$$i(t) = C \frac{dv}{dt} = 5 \times 10^{-6} \frac{d}{dt} (10\cos 6000t)$$

 $= -5 \times 10^{-6} \times 6000 \times 10 \sin 6000t$

 $= -0.3 \sin 6000t$ A

9/23/2018

Determine the voltage across a $2-\mu F$ capacitor if the current through it is

$$i(t) = 6e^{-3000t}$$
 mA

Assume that the initial capacitor voltage is zero.

Solution

$$v = \frac{1}{C} \int_0^t i d\tau + v(0) \quad \text{and} \quad v(0) = 0$$
$$v = \frac{1}{2 \times 10^{-6}} \int_0^t 6e^{-3000t} \times 10^{-3} d\tau = \frac{3 \times 10^3}{-3000} e^{-3000t} \Big|_0^t = \left(1 - e^{-3000t}\right) \quad V$$

Obtain the energy stored in each capacitor in Fig. (a) under dc conditions.

Solution

Under dc conditions, we replace each capacitor with an open circuit, as shown in Fig. (b). The current through the series combination of the 2- $k\Omega$ and 4- $k\Omega$ resistors is obtained by current division (CDR) as 3

$$i = \frac{3}{3+2+4} 6 \,\mathrm{mA} = 2 \,\mathrm{mA}$$

Hence, the voltages v_1 and v_1 across the capacitors are $v_1 = 2000i = 4 \text{ V}; \quad v_2 = 2000i = 8 \text{ V}$

and the energies stored in them are

$$w_{1} = \frac{1}{2}C_{1}v_{1}^{2} = \frac{1}{2} \times (2 \times 10^{-3})(4)^{2} = 16 \text{ mJ}$$
$$w_{2} = \frac{1}{2}C_{2}v_{2}^{2} = \frac{1}{2} \times (4 \times 10^{-3})(8)^{2} = 128 \text{ mJ}$$

9/23/2018

6.2 Series and Parallel Capacitors

Parallel capacitors

The equivalent capacitance of N parallelconnected capacitors is the sum of the individual capacitances.

$$C_{\rm eq} = C_1 + C_2 + C_3 + \dots + C_N$$

Series capacitors

The equivalent capacitance of seriesconnected capacitors is the reciprocal of the sum of the reciprocals of the individual capacitances.

$$\frac{1}{C_{\rm eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots + \frac{1}{C_N}$$

For N = 2 (i.e., two capacitors in series):

$$C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$$

Dr. eng. Hassan Ahmad

 $c_3 \neq$

 $C_{eq} =$

9/23/2018

6.3 Inductors

- An inductor is a passive element designed to store energy in its magnetic field.
- An inductor consists of a coil of conducting wire.
- The voltage across the inductor is

$$v = L \frac{di}{dt}$$

Number of turns, N

where *L* is the constant, called the inductance of the inductor.

Inductance is the property whereby an inductor ex<u>h</u>ibits opposition to the change of current flowing through it, measured in henrys (H): $L = \frac{N^2 \mu A}{L}$

where:

N is the number of turns, ℓ is the length, A is the cross-sectional area, and μ is the permeability (النفاذية) of the core.

<mark>9/23/2018</mark>

Common Types of Inductors

Various **types** of inductors:

- a) solenoidal wound (ملفوف بشكل لولبي) inductor,
- b) toroidal (حلقي) inductor,

(a)

c) holuctor. (سلك موصل محوري) inductor.

The circuit **symbols** for inductors: (a) air-core, (b) iron-core, (c) variable ironcore.

(b)

(a)

(C)

Current-Voltage relationship, Power & Energy of Inductor

• The current-voltage relationship is obtained as:

$$di = \frac{1}{L} v dt \Longrightarrow i = \frac{1}{L} \int_{-\infty}^{t} v(\tau) d\tau$$

or

where $i(t_0)$ is the total current for $-\infty < t < t_0$ and $i(-\infty) = 0$.

 $i = \frac{1}{L} \int_{t_0}^t v(\tau) d\tau + i(t_0)$

• The **power** delivered to the inductor is

$$p = vi = (L\frac{di}{dt})i$$

The energy stored: $w = \int_{-\infty}^{t} p(\tau) d\tau = L \int_{-\infty}^{t} \frac{di}{d\tau} i d\tau = L \int_{-\infty}^{t} i dt = \frac{1}{2} L i^{2}(t) - \frac{1}{2} L i^{2}(-\infty)$ Since $i(-\infty) = 0$, $w = \frac{1}{2} L i^{2}$

Important properties of an inductor:

- 1) An inductor acts like a short circuit to dc.
- 2) The current through an inductor cannot change instantaneously.

Example 6.7 The current through a 0.1-H inductor is $i(t) = 10te^{-5t}$ A Find the voltage across the inductor and the energy stored in it. **Solution** Since v = L di/dt and L = 0.1 H, $v = 0.1 \frac{d}{dt} (10te^{-5t}) = e^{-5t} + t(-5)e^{-5t} = e^{-5t} (1-5t)$ V The energy stored is $w = \frac{1}{2}Li^2 = \frac{1}{2}(0.1) \times 100t^2 e^{-10t} = 5t^2 e^{-10t}$ J

Find the current through a 5-H inductor if the voltage across it is

$$w(t) = \begin{cases} 30t^2, & t > 0\\ 0, & t < 0 \end{cases}$$

Also, find the energy stored at t = 5 s. Assume i(v) > 0.

Solution

Since
$$L = 5 \text{ H} \Rightarrow i = \frac{1}{L} \int_{t_0}^t v(\tau) d\tau + i(t_0) = i = \frac{1}{5} \int_0^t 30\tau^2 d\tau + 0 = 6 \times \frac{t^3}{3} = 2t^3 \text{ A}$$

The power : $p = vi = 30t^2 \times 2t^3 = 60t^5$ W

The energy stored: $w = \int p dt = \int_0^5 60t^5 dt = 60 \frac{t^6}{6} \Big|_0^5 = 156.25 \text{ kJ}$

Alternatively,

$$w_{0}^{5} = \frac{1}{2}Li^{2}(5) - \frac{1}{2}Li^{2}(0) = \frac{1}{2}(5)(2 \times 5^{3})^{2} - 0 = 156.25 \text{ kJ}$$

9/23/2018

9/23/2018

Dr. eng. Hassan Ahmad

Example 6.9

Consider the circuit in Fig.(a). Under dc conditions, find:

- a) i, v_C , and i_L ,
- b) the energy stored in the capacitor and inductor.

Solution

a) Under dc conditions, we replace the capacitor with an open circuit and the inductor with a short circuit, as in Fig. (b).

$$i = i_L = \frac{12}{1+5} 2A$$

is the same as the voltage acros

10

The voltage v_c is the same as the voltage across the 5- Ω resistor. Hence, $v_c = 5i = 10$ V

b) The energy in the capacitor is

$$w_C = \frac{1}{2}Cv_C^2 = \frac{1}{2}(1)(10)^2 = 50$$
 J; $w_L = \frac{1}{2}Li_L^2 = \frac{1}{2}(2)(2)^2 = 4$ J

6.4 Series and Parallel Inductors

Series inductors

The equivalent inductance of series-connected inductors is the sum of the individual inductances.

$$L_{\rm eq} = L_1 + L_2 + L_3 + \dots + L_N$$

Parallel inductors

The equivalent inductance of parallel inductors is the reciprocal of the sum of the reciprocals of the individual inductances.

$$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3} + \dots + \frac{1}{L_N}$$

For two inductors in parallel (N = 2),

$$L_{\rm eq} = \frac{L_1 L_2}{L_1 + L_2}$$

9/23/2018

Dr. eng. Hassan Ahmad

 L_3

Important characteristics of the basic elements.

	Relation	Resistor (R)	Capacitor (C)	Inductor (L)
	<i>v-i</i> :	v = iR	$v = \frac{1}{C} \int_{t_0}^t i(\tau) d\tau + v(t_0)$	$v = L \frac{di}{dt}$
	<i>i-v</i> :	i = v/R	$i = C \frac{dv}{dt}$	$i = \frac{1}{L} \int_{t_0}^t v(\tau) d\tau + i(t_0)$
	p or w:	$p = i^2 R = \frac{v^2}{R}$	$w = \frac{1}{2}Cv^2$	$w = \frac{1}{2}Li^2$
	Series:	$R_{\rm eq} = R_1 + R_2$	$C_{\rm eq} = \frac{C_1 C_2}{C_1 + C_2}$	$L_{\rm eq} = L_1 + L_2$
	Parallel:	$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$	$C_{\rm eq} = C_1 + C_2$	$L_{\rm eq} = \frac{L_1 L_2}{L_1 + L_2}$
	At dc:	Same	Open circuit	Short circuit
9/23	3/2018	Dr. e	eng. Hassan Ahmad	20

This 6-H in series with 4-H and 8-H. Hence,

 $L_{\rm eq} = 4 + 6 + 8 = 18 \, {\rm H}$

9/23/2018

For the circuit in Fig. , $i(t) = 4(2 - e^{-10t})$ mA . If $i_2(0) = -1$ mA, find:

 $i_1(0)$; v(t), $v_1(t)$, and $v_2(t)$; $i_1(t)$ and $i_2(t)$. Solution

a) From
$$i(t) = 4(2 - e^{-10t}) \text{ mA} \Rightarrow i(0) = 4(2 - 1) = 4 \text{ mA}$$

Since
$$i = i_1 + i_2 \implies i_1(0) = i(0) - i_2(0) = 4 - (-1) = 5 \text{ mA}$$

b) The equivalent inductance is $L_{eq} = 2 + 4 || 12 = 5H$ Thus,

$$v(t) = L_{eq} \frac{dt}{dt} = 5(4)(-1)(-10)e^{-10t} = 200e^{-10t} \text{ mV}$$
$$v_1(t) = 2\frac{di}{dt} = 2(-4)(-10)e^{-10t} = 80e^{-10t} \text{ mV}$$

$$v = v_1 + v_2 \Longrightarrow v_2(t) = v(t) - v_1(t) = 120e^{-10t} \text{ mV}$$

9/23/2018

Dr. eng. Hassan Ahmad

v2

12 H

4 H

c) The current i_1 is obtained as

$$\int_{1}^{t} (t) = \frac{1}{4} \int_{0}^{t} v_{2} dt + i_{1}(0) = \frac{120}{4} \int_{0}^{t} e^{-10t} dt + 5 \text{ mA}$$
$$= 30 \times \left(-\frac{1}{10} \right) e^{-10t} \Big|_{0}^{t} + 5 \text{ mA} = -3e^{-10t} + 3 + 5 = 8 - 3e^{-10t} \text{ mA}$$

Similarly,

$$i_{2}(t) = \frac{1}{12} \int_{0}^{t} v_{2} dt + i_{2}(0) = \frac{120}{12} \int_{0}^{t} e^{-10t} dt - 1 \text{ mA}$$
$$= 10 \times \left(-\frac{1}{10} \right) e^{-10t} \Big|_{0}^{t} - 1 \text{ mA} = -e^{-10t} + 1 - 1 = -e^{-10t} \text{ mA}$$

Note that

$$i_1(t) + i_2(t) = i(t)$$

8-3 e^{-10t} mA + (- e^{-10t} mA) = 4(2 - e^{-10t}) mA

9/23/2018

i2

ਤ੍ਰੋ 12 H

 $i(t) = 4(2 - e^{-10t})$ mA

4 H ਤੋਂ

v₂

The end of chapter 6