SYRIAN PRIVATE UNIVERSITY

## Electric Circuits I

 Dr. Eng. Hassan M. AfmadHassan.Ahmad@spu.edu.sy, istamo48@mail.ru

# Chapter 6 Capacitors and Inductors 

6.1 Capacitors
6.2 Series and Parallel Capacitors
6.3 Inductors
6.4 Series and Parallel Inductors

### 6.1 Capacitors

- A capacitor is a passive element designed to store energy in its electric field.
- A capacitor consists of two conducting plates separated by an insulator (or dielectric).
- The amount of charge stored, represented by $q$ :

$$
q=C v
$$

- Capacitance $C$ is the ratio of the charge $q$ on one plate of a capacitor to the voltage difference $v$ between the two plates, measured in farads ( $\mathbf{F}$ ).
- For example, for the parallel plate capacitor shown in Fig., the capacitance is given by

$$
C=\frac{\varepsilon A}{d}
$$

where $\varepsilon$ is the permittivity (سماحية) of the dielectric material between the plates, $A$ is the surface area (مساحة
 (السطح) of each plate, $d$ is the distance between the plates.

## Types of Capacitors

- Typically, capacitors have values in the picofarad ( $\mathrm{pF}, 10^{-12}$ ) ,

(a) nanofarad ( $\mathrm{nF}, 10^{-9}$ ), microfarad ( $\mu \mathrm{F}, 10^{-6}$ ).
- There are two types: (a) fixed and (b) variable, with circuit symbols as shown in Fig.
- If $v>0$ and $i>0$ or if $v<0$ and $i<0$, the capacitor is being charged, and if $v \cdot i<0$, the capacitor is discharging.

(b)
- Fixed capacitors: (1) polyester, (2) ceramic, (3) electrolytic.
- Variable capacitors: (4) trimmer, (5) filmtrim.
- In addition, capacitors are used to block dc, pass ac, shift phase, store energy, start motors, and suppress noise.


## Current \& Voltage of the capacitor

- If $v>0$ and $i>0$ or if $v<0$ and $i<0$, the capacitor is being charged, and if $v \cdot i<0$, the capacitor is discharging.
- The current-voltage relationship of the capacitor is defined as following:

$$
q=C v \text { and } i=\frac{d q}{d t} \Rightarrow \quad i=C \frac{d v}{d t}
$$


(a)

(b) obtained by $\quad v(t)=\frac{1}{C} \int_{-\infty}^{t} i(\tau) d \tau$ or $v(t)=\frac{1}{C} \int_{t_{0}}^{t} i(\tau) d \tau+v\left(t_{0}\right)$

- where $v\left(t_{0}\right)=q\left(t_{0}\right) / C$ is the voltage across the capacitor at time $t_{0}$.


## Power \& Energy of the capacitor

- The instantaneous power delivered to the capacitor is

$$
p=v i=C v \frac{d v}{d t}
$$

- The energy stored in the capacitor is

$$
w=\int_{-\infty}^{t} p(\tau) d \tau=C \int_{-\infty}^{t} v \frac{d v}{d \tau} d \tau=C \int_{v(-\infty)}^{v(t)} v d v=\left.\frac{1}{2} C v^{2}\right|_{v(-\infty)} ^{v(t)}
$$

- We note that $v(-\infty)=0$, because the capacitor was uncharged at $t=-\infty$.
- Thus, $w=\frac{1}{2} C v^{2}$. We may rewrite energy stored as $w=\frac{q^{2}}{2 C}$
- Important properties of a capacitor:

1) A capacitor is an open circuit to dc voltage (the current through the capacitor is zero). (dc conditions)
2) The voltage on a capacitor cannot change abruptly (فجأة).

## Example 6.1

1) Calculate the charge stored on a 3-pF capacitor with 20 V across it.
2) Find the energy stored in the capacitor.

## Solution

1) Since $q=C v, \rightarrow q=3 \times 10^{-12} \times 20=60 \mathrm{pC}$
2) The energy stored is

$$
w=\frac{1}{2} C v^{2}=\frac{1}{2} \times 3 \times 10^{-12} \times(20)^{2}=600 \mathrm{pJ}
$$

## Example 6.2

The voltage across a $5-\mu \mathrm{F}$ capacitor is $\quad 火(t)=10 \cos 6000 t \mathrm{~V}$
Calculate the current through it.
Solution

$$
\begin{aligned}
i(t) & =C \frac{d v}{d t}=5 \times 10^{-6} \frac{d}{d t}(10 \cos 6000 t) \\
& =-5 \times 10^{-6} \times 6000 \times 10 \sin 6000 t \\
& =-0.3 \sin 6000 t \mathrm{~A}
\end{aligned}
$$

## Example 6.3

Determine the voltage across a $2-\mu \mathrm{F}$ capacitor if the current through it is

$$
i(t)=6 e^{-3000 t} \mathrm{~mA}
$$

Assume that the initial capacitor voltage is zero.
Solution

$$
\begin{aligned}
& v=\frac{1}{C} \int_{0}^{t} i d \tau+v(0) \text { and } v(0)=0 \\
& v=\frac{1}{2 \times 10^{-6}} \int_{0}^{t} 6 e^{-3000 t} \times 10^{-3} d \tau=\left.\frac{3 \times 10^{3}}{-3000} e^{-3000 t}\right|_{0} ^{t}=\left(1-e^{-3000 t}\right) \mathrm{V}
\end{aligned}
$$

## Example 6.4

Obtain the energy stored in each capacitor in Fig. (a) under dc conditions.

## Solution

Under dc conditions, we replace each capacitor with an open circuit, as shown in Fig. (b).
The current through the series combination of the 2 $\mathrm{k} \Omega$ and $4-\mathrm{k} \Omega$ resistors is obtained by current

(a)

(b)

$$
\begin{aligned}
& w_{1}=\frac{1}{2} C_{1} v_{1}^{2}=\frac{1}{2} \times\left(2 \times 10^{-3}\right)(4)^{2}=16 \mathrm{~mJ} \\
& w_{2}=\frac{1}{2} C_{2} v_{2}^{2}=\frac{1}{2} \times\left(4 \times 10^{-3}\right)(8)^{2}=128 \mathrm{~mJ}
\end{aligned}
$$

### 6.2 Series and Parallel Capacitors

## Parallel capacitors

The equivalent capacitance of N parallelconnected capacitors is the sum of the individual capacitances.

$$
C_{\mathrm{eq}}=C_{1}+C_{2}+C_{3}+\ldots+C_{N}
$$

## Series capacitors

The equivalent capacitance of seriesconnected capacitors is the reciprocal of the sum of the reciprocals of the individual capacitances.

$$
\frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\ldots+\frac{1}{C_{N}}
$$

For $N=2$ (i.e., two capacitors in series):

$$
C_{e q}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}
$$



## Example 6.5

Find the equivalent capacitance seen between terminals $a$ and $b$ of the circuit in Fig.

## Solution

$20-\mu \mathrm{F}$ and $5-\mu \mathrm{F}$ in series:

$$
\frac{20 \times 5}{20+5}=4 \mu \mathrm{~F}
$$

$4-\mu \mathrm{F}$ in parallel with the $6-\mu \mathrm{F}$ and $20-\mu \mathrm{F}$ :

$$
4+6+20=30 \mu \mathrm{~F}
$$

$30-\mu \mathrm{F}$ in series with $60-\mu \mathrm{F}: \quad C_{\mathrm{eq}}=\frac{30 \times 60}{30+60}=20 \mu \mathrm{~F}$

## Example 6.6

For the circuit in Fig., find the voltage across each capacitor.

## Solution

We first find the equivalent capacitance $C_{\mathrm{eq}}$ :

$$
40 \mathrm{mF} \| 20 \mathrm{mF} \Rightarrow 40+20=60 \mathrm{mF}
$$

$60-\mathrm{mF}$ in series with $20-\mathrm{mF}$ and $30-\mathrm{mF}$ :


$$
\frac{1}{C_{\mathrm{eq}}}=\frac{1}{60}+\frac{1}{30}+\frac{1}{20} \mathrm{mF} \Rightarrow C_{\mathrm{eq}}=10 \mathrm{mF}
$$

The total charge is $\quad q=C_{\text {eq }} v=10 \times 10^{-3} \times 30=0.3 \mathrm{C}$
This is the charge on the $20-\mathrm{mF}$ and $30-\mathrm{mF}$ capacitors, becau:
 with the $30-\mathrm{V}$ source. ( the charge acts like current, since $i=d q / d t$.)
Therefore,

$$
v_{1}=\frac{q}{C_{1}}=\frac{0.3}{20 \times 10^{-3}}=15 \mathrm{~V} ; \quad v_{2}=\frac{q}{C_{2}}=\frac{0.3}{30 \times 10^{-3}}=10 \mathrm{~V}
$$

$$
v_{3}=30-v_{1}-v_{2}=5 \mathrm{~V}
$$

Alternatively, the $20-\mathrm{mF}, 30-\mathrm{mF}$ and $60-\mathrm{mF}$ in series, so they have the same charge on it. Hence, $\quad v_{3}=\frac{q}{60 \mathrm{mF}}=\frac{0.3}{60 \times 10^{-3}}=5 \mathrm{~V}$

### 6.3 Inductors

- An inductor is a passive element designed to store energy in its magnetic field.
- An inductor consists of a coil of conducting wire.
- The voltage across the inductor is

$$
v=L \frac{d i}{d t}
$$


where $L$ is the constant, called the inductance of the inductor.

- Inductance is the property whereby an inductor exhibits opposition to the change of current flowing through it, measured in henrys $(\mathrm{H})$ : where:

$$
L=\frac{N^{2} \mu A}{l}
$$

$N$ is the number of turns, $\ell$ is the length, $A$ is the cross-sectional area, and $\mu$ is the permeability (الثفاذية) of the core.

## Common Types of Inductors

Various types of inductors:
a) solenoidal wound (ملفوف بشكل لولبي) inductor,
b) toroidal (حقي) inductor,
c) axial lead (سلك موصل محوري) inductor.

The circuit symbols for inductors:

(b)
(a) air-core,
(b) iron-core
(c) variable iron- core.


## Current-Voltage relationship, Power \& Energy of Inductor

- The current-voltage relationship is obtained as: $\quad d i=\frac{1}{L} v d t \Rightarrow i=\frac{1}{L} \int_{-\infty}^{t} v(\tau) d \tau$
or

$$
i=\frac{1}{L} \int_{t_{0}}^{t} v(\tau) d \tau+i\left(t_{0}\right)
$$

where $i\left(t_{0}\right)$ is the total current for $-\infty<t<t_{0}$ and $i(-\infty)=0$.

- The power delivered to the inductor is $\quad p=v i=\left(L \frac{d i}{d t}\right) i$
- The energy stored: $\quad w=\int_{-\infty}^{t} p(\tau) d \tau=L \int_{-\infty}^{t} \frac{d i}{d \tau} i d \tau=L \int_{-\infty}^{t} i d i=\frac{1}{2} L i^{2}(t)-\frac{1}{2} L i^{2}(-\infty)$

Since $i(-\infty)=0$,

$$
w=\frac{1}{2} L i^{2}
$$

Important properties of an inductor:

1) An inductor acts like a short circuit to dc.
2) The current through an inductor cannot change instantaneously.

## Example 6.7

The current through a $0.1-\mathrm{H}$ inductor is

$$
i(t)=10 t e^{-5 t} \mathrm{~A}
$$

Find the voltage across the inductor and the energy stored in it.
Solution
Since $v=L d i / d t$ and $L=0.1 \mathrm{H}$,

$$
v=0.1 \frac{d}{d t}\left(10 t e^{-5 t}\right)=e^{-5 t}+t(-5) e^{-5 t}=e^{-5 t}(1-5 t) \mathrm{V}
$$

The energy stored is

$$
w=\frac{1}{2} L i^{2}=\frac{1}{2}(0.1) \times 100 t^{2} e^{-10 t}=5 t^{2} e^{-10 t} \quad \mathrm{~J}
$$

## Example 6.8

Find the current through a $5-\mathrm{H}$ inductor if the voltage across it is

$$
v(t)= \begin{cases}30 t^{2}, & t>0 \\ 0, & t<0\end{cases}
$$

Also, find the energy stored at $t=5 \mathrm{~s}$. Assume $i(v)>0$.
Solution
Since $L=5 \mathrm{H} \rightarrow \quad i=\frac{1}{L} \int_{t_{0}}^{t} v(\tau) d \tau+i\left(t_{0}\right)=i=\frac{1}{5} \int_{0}^{t} 30 \tau^{2} d \tau+0=6 \times \frac{t^{3}}{3}=2 t^{3} \mathrm{~A}$

The power: $\quad p=v i=30 t^{2} \times 2 t^{3}=60 t^{3} \mathrm{~W}$
The energy stored: $\quad w=\int p d t=\int_{0}^{5} 60 t^{5} d t=\left.60 \frac{t^{6}}{6}\right|_{0} ^{5}=156.25 \mathrm{~kJ}$
Alternatively,

$$
\left.w\right|_{0} ^{5}=\frac{1}{2} L i^{2}(5)-\frac{1}{2} L i^{2}(0)=\frac{1}{2}(5)\left(2 \times 5^{3}\right)^{2}-0=156.25 \mathrm{~kJ}
$$

## Example 6.9

Consider the circuit in Fig.(a). Under dc conditions, find:
a) $i, v_{C}$, and $i_{L}$,
b) the energy stored in the capacitor and inductor.

## Solution


(a)
a) Under dc conditions, we replace the capacitor with an open circuit and the inductor with a short circuit, as in Fig. (b).

$$
i=i_{L}=\frac{12}{1+5} 2 \mathrm{~A}
$$

The voltage $v_{C}$ is the same as the voltage across the $5-\Omega$ resistor. Hence, $\quad v_{C}=5 i=10 \mathrm{~V}$
b) The energy in the capacitor is

(b)

$$
w_{C}=\frac{1}{2} C v_{C}^{2}=\frac{1}{2}(1)(10)^{2}=50 \mathrm{~J} ; \quad w_{L}=\frac{1}{2} L i_{L}^{2}=\frac{1}{2}(2)(2)^{2}=4 \mathrm{~J}
$$

### 6.4 Series and Parallel Inductors

## Series inductors

The equivalent inductance of series-connected inductors is the sum of the individual inductances.

$$
L_{\mathrm{eq}}=L_{1}+L_{2}+L_{3}+\ldots+L_{N}
$$



## Parallel inductors

The equivalent inductance of parallel inductors is the reciprocal of the sum of the reciprocals of the individual inductances.

$$
\frac{1}{L_{\mathrm{eq}}}=\frac{1}{L_{1}}+\frac{1}{L_{2}}+\frac{1}{L_{3}}+\ldots+\frac{1}{L_{N}}
$$



For two inductors in parallel ( $N=2$ ),

$$
L_{\mathrm{eq}}=\frac{L_{1} L_{2}}{L_{1}+L_{2}}
$$



## Important characteristics of the basic elements.

| Relation | Resistor $(\boldsymbol{R})$ | Capacitor $(\boldsymbol{C})$ | Inductor $(\boldsymbol{L})$ |
| :--- | :--- | :--- | :--- |
| $v-i:$ | $v=i R$ | $v=\frac{1}{C} \int_{t_{0}}^{t} i(\tau) d \tau+v\left(t_{0}\right)$ | $v=L \frac{d i}{d t}$ |
| $i-v:$ | $i=v / R$ | $i=C \frac{d v}{d t}$ | $i=\frac{1}{L} \int_{t_{0}}^{t} v(\tau) d \tau+i\left(t_{0}\right)$ |
| $p$ or $w:$ | $p=i^{2} R=\frac{v^{2}}{R}$ | $w=\frac{1}{2} C^{2}$ | $w=\frac{1}{2} L i^{2}$ |
| Series: | $R_{\text {eq }}=R_{1}+R_{2}$ | $C_{\text {eq }}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$ | $L_{\text {eq }}=L_{1}+L_{2}$ |
| Parallel: | $R_{\text {eq }}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$ | $C_{\text {eq }}=C_{1}+C_{2}$ | $L_{\text {eq }}=\frac{L_{1} L_{2}}{L_{1}+L_{2}}$ |
| At dc: | Same | Open circuit | Short circuit |

## Example 6.10

Find the equivalent inductance of the circuit shown in Fig.

## Solution

The $10-\mathrm{H}, 12-\mathrm{H}$, and $20-\mathrm{H}$ inductors are in series;
 thus,

$$
10+12+20=42 \mathrm{H}
$$

This $42-\mathrm{H}$ is in parallel with the $7-\mathrm{H}$ :

$$
\frac{7 \times 42}{7+42}=6 \mathrm{H}
$$

This $6-\mathrm{H}$ in series with $4-\mathrm{H}$ and $8-\mathrm{H}$. Hence,

$$
L_{\mathrm{eq}}=4+6+8=18 \mathrm{H}
$$

## Example 6.11

For the circuit in Fig., $i(t)=4\left(2-e^{-10 t}\right) \mathrm{mA}$. If $i_{2}(0)=-1 \mathrm{~mA}$, find: $i_{1}(0) ; v(t), v_{1}(t)$, and $v_{2}(t) ; i_{1}(t)$ and $i_{2}(t)$.

## Solution

a) From $i(t)=4\left(2-e^{-10 t}\right) \mathrm{mA} \Rightarrow i(0)=4(2-1)=4 \mathrm{~mA}$

Since $\quad i=i_{1}+i_{2} \Rightarrow i_{1}(0)=i(0)-i_{2}(0)=4-(-1)=5 \mathrm{~mA}$

b) The equivalent inductance is $L_{\mathrm{eq}}=2+4 \| 12=5 H$ Thus,

$$
\begin{aligned}
& v(t)=L_{e q} \frac{d i}{d t}=5(4)(-1)(-10) e^{-10 t}=200 e^{-10 t} \mathrm{mV} \\
& v_{1}(t)=2 \frac{d i}{d t}=2(-4)(-10) e^{-10 t}=80 e^{-10 t} \mathrm{mV} \\
& v=v_{1}+v_{2} \Rightarrow v_{2}(t)=v(t)-v_{1}(t)=120 e^{-10 t} \mathrm{mV}
\end{aligned}
$$

c) The current $i_{1}$ is obtained as

$$
i(t)=4\left(2-e^{-10 t}\right) \mathrm{mA}
$$

$$
\begin{aligned}
i_{1}(t) & =\frac{1}{4} \int_{0}^{t} v_{2} d t+i_{1}(0)=\frac{120}{4} \int_{0}^{t} e^{-10 t} d t+5 \mathrm{~mA} \\
& =30 \times\left.\left(-\frac{1}{10}\right) e^{-10 t}\right|_{0} ^{t}+5 \mathrm{~mA}=-3 e^{-10 t}+3+5=8-3 e^{-10 t} \mathrm{~mA}
\end{aligned}
$$

Similarly,

$$
\stackrel{i}{\longrightarrow} 2 \mathrm{H}
$$

$$
\begin{aligned}
i_{2}(t) & =\frac{1}{12} \int_{0}^{t} v_{2} d t+i_{2}(0)=\frac{120}{12} \int_{0}^{t} e^{-10 t} d t-1 \mathrm{~mA} \\
& =10 \times\left.\left(-\frac{1}{10}\right) e^{-10 t}\right|_{0} ^{t}-1 \mathrm{~mA}=-e^{-10 t}+1-1=-e^{-10 t} \mathrm{~mA}
\end{aligned}
$$

Note that

$$
\begin{aligned}
& i_{1}(t)+i_{2}(t)=i(t) \\
& 8-3 e^{-10 t} \mathrm{~mA}+\left(-e^{-10 t} \mathrm{~mA}\right)=4\left(2-e^{-10 t}\right) \mathrm{mA}
\end{aligned}
$$



## The endl off chapterp 6

